
Representation Learning with No Strings Attached?
Investigating Unsupervised Time-Domain

Representation Learning for Digital Instruments

Author

Thomas Kaplan

Supervisor

Dr Andrew McPherson

MAT Advanced Placement Project Report 2019
School of Electronic Engineering and Computer Science

Queen Mary University of London

September 2019



Abstract
Digital musical instruments (DMIs) are typically constructed with highly engineered signal
models, using physical models and general-purpose signal processing. Despite providing
low-latency and intuitive feature spaces which are convenient for performance applications,
these approaches often lack the flexibility and complexity needed to model the vast range
of achievable performance nuance. In this report we instead harness unsupervised learning
methods, with the goal of learning complex and salient feature representations of DMI sig-
nals. Variational Recurrent Autoencoders (VRAEs) are deep generative models which learn to
compress data in high-dimensional spaces into low-dimensional latent spaces, and to decom-
press latent encodings. Constructed using Recurrent Neural Networks (RNNs), VRAEs learn
to capture the most salient features of a time series, which is appealing for modelling high-
resolution DMI signals. We demonstrate that VRAEs are capable of encoding time-domain
signals of bowed string vibrations in only 3-dimensions; with a compression ratio of 100:3
(at 11.025kHz). Resynthesis of the latent encodings was greatly improved in a novel model, a
VRAE-ST, which introduces a Sequence Transformer (ST) in order to remove distributional
shifts in the form of magnitude and temporal perturbations. With reversible transforma-
tions before encoding and after decoding, the VRAE-ST applied transformations resembling
downsampling and amplitude normalisation. Given the VRAE’s unintuitive latent geometry,
we also introduce a LatentRNN that is capable of learning the complex trajectories in latent
space. Supported by the improved synthesis quality of the VRAE-ST, a LatentRNN might be
used for various generative applications with DMIs. An exciting opportunity for future work
will be to meaningfully map from latent encodings (or trajectories) to synthesis parameters in
some DMI.
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Chapter 1

Introduction
Digital musical instruments (DMIs) face a significant challenge in providing and enhancing
the level of performance nuance achievable with acoustic musical instruments. Key to this
challenge is developing intuitive and detailed schemes to control sound synthesis, beginning
with computationally modelling the signals produced by the DMI. State-of-the art approaches
typically share a common thread in extracting fixed features, as this design supports intuitive
control. However fixed features can be inhibitive in capturing of performance detail, if they
(or their combination) don’t reflect the most perceptually salient properties of a signal. These
models might also fail to meaningfully interpret rare or novel performance nuance.

For example, Buys et al. [1] developed a model which expects a uniform signal with fea-
tures reflecting bowed string vibrations. This was reported by Pardue et al. [2] to behave
chaotically when a violin produced raucous tones, likely due to unanticipated string dynamics.
Sensory Percussion by Sunhouse [3, 4] uses neural models with spectral features to perform
strike (onset) detection on a drumhead, and to alter timbre of triggered audio samples. Trig-
gering discrete pre-prepared audio samples won’t reflect the subtle acoustic properties of the
drumhead, vastly reducing a performer’s control and potentially masking nuances. This re-
port is therefore concerned with developing alternative approaches to modelling DMI signals,
avoiding fixed features.

Generative models and unsupervised learning techniques offer an exciting opportunity to
learn meaningful representations of features in signals, without defining fixed features. One
popular generative model being explored in various musical applications is the Variational
Autoencoder (VAE). VAEs include encoder and decoder neural networks: the encoder learns
to compress input data into a latent space (dimensionality reduction); and the decoder uses
the latent vectors to reconstruct the input. The construction of a latent space is appealing
in providing a reduced representation of signals from DMIs, which might reflect the most
salient features for resynthesis. This report is mostly concerned with this opportunity for
detailed latent analysis of a signal, but the network can also be used to synthesise novel signals
(generation). We assert that the reduced but rich feature representation learned by VAEsmight
resemble something closer to expertise transfer.

Typical VAE applications in music involve transformation of audio samples into the fre-
quency domain [5] or into symbolic representations [6, 7, 8]. However, we are concerned
with high-resolution time-domain analysis in order to retain full performance detail, which
poses a challenge in data dimensionality. Harnessing continuous and high-resolution sensors
has been key to developing new hybrid and electronic instruments, such as The Magnetic
Resonator Piano by McPherson [9], and The MagPick by Morreale et al. [10]. Additionally,
time-domain models avoid latency costs associated with pre-processing, such as transform-
ing large audio buffers in-and-out of the frequency domain.

This report investigates unsupervised learning as a technique for expertise transfer in
DMIs. Instead of designing and extracting fixed features, we learn reduced representa-
tions of high-resolution time-domain sensor signals. We evaluate how these modelling
techniques might enable the development of DMIs with intuitive control alongside per-
formance nuance.
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Chapter 1. Introduction 2

1.1 Contributions
Two instruments are explored in this work using unsupervised learning techniques: (1) a
custom electronic drumhead, as electronic percussion is plagued by discrete representations
of performance (drumhead strikes as discrete ‘onsets’) and (2) a violin with electronic pickup,
as contrasting approaches in literature use fixed-feature extraction techniques. Although the
models developed weren’t evaluated in real-time use, we were mindful of the training and
performance costs, for future use in performance applications. Instead, we largely focused
on a high quality (re)synthesised output of the models - a mandatory feature for performance
applications. Generative use of the models was explored, as a lesser focus, as it illustrated
whether models were intuitive. The technical contributions of this work are as follows:

1. In Chapter 3 we develop a multi-output LSTM forecast model capable of anomaly de-
tection for time-domain drumhead oscillation signals. By providing a continuous signal
reflecting forecast error, a richer signal is provided to characterise exogenous events
(e.g. drum strikes) than simple onset markers. Harmonic properties are harnessed to
make accurate forecasts over numerous oscillation cycles (∼18ms), treating windows
of samples as multiple-features of a single timestep.

2. In Chapter 4 we develop Variational Recurrent Autoencoders (VRAEs) that construct
a latent space characterising time-domain bowed string velocity signals. In order to
improve quality of the resynthesised signal, we (1) apply an overlap-add method to re-
constructed windows (2) introduce Sequence Transformer (ST) layers that learn task-
irrelevant variances in the input distribution (Section 4.2). Together, these form a novel
approach that minimises audible noise resulting from inconsistent window reconstruc-
tions. We demonstrate the challenge in using the VRAE’s latent space for generative
ends, before introducing a more rigorous method to circumvent unintuitive feature rep-
resentations (Section 4.3).

1.2 Report Structure
This report is organised as follows: in Chapter 2 we provide a background on computation-
ally modelling features in time series and DMI signals; in Chapter 3 we develop RNNs as
predictive models for DMI signals; and in Chapter 4 we develop VRAEs which learn a latent
representation of DMI signals. Within Chapter 4: in Section 4.2 we develop a model that
harnesses task-irrelevant invariances in DMI signals; and, in Section 4.3, we develop a model
to learn meaningful sequences of latent vectors.



Chapter 2

Background
In this chapter we describe various approaches to computationally modelling features in time
series, which might be applied to DMI sensor signals. It should become evident that some
approaches start with a process of (sometimes rigorous) feature engineering or modelling -
i.e. developing fixed features. While being computationally malleable and interpretable, the
surveyed approaches may not develop feature representations allowing for the level of nuance
demanded by an experienced musician. As an alternative, we finally introduce unsupervised
machine learning algorithms at the end of this chapter. In doing so, we consider some of the
challenges in using these models in musical applications, alongside the exciting benefits.

2.1 Time Series Modelling in Digital Instruments
Digital musical instruments (DMIs) crucially demand not only low but consistent latency,
in order to seamlessly translate performer actions to some audible outputs. Jack et al. [11]
demonstrated that the aim should be 10ms, and that variance shouldn’t exceed 1ms. This
poses a significant challenge for systems trying to extract information from time series, which
is often complex and high-resolution sensor data with a sampling frequency around 44.1kHz
(46µs). In order to address the limitations faced when processing complex sensor data for
interactive music systems, McPherson et al. [12] developed a new embedded platform, Bela1.
Bela allows audio processing to preempt its kernel, facilitating audio buffers as small as 2
samples at 44.1kHz [13].

Bela has been applied in many interactive applications. Morreale et al. [10] created ‘Mag-
Pick’, an augmented guitar pick that can detect nuanced ancxillary gestures, which is used
to modify (and extend) the sound of the guitar. This is made possible by electromagnetic
induction - the pick contains loops of wire, and the induced signal is passed through a pream-
plifier before processing in Bela. In terms of data modelling, simple signal transformation
and thresholding is used to activate some pre-defined effects, devised through manual data
exploration. Pardue et al. [2] developed a hybrid acoustic-electric violin, where a Bela Mini is
used per-string to process the output of an electrodynamic pickup. Discussed in 2.3.1, a linear
segmented regression model is harnessed for real-time analysis of string signals. Somewhat
similarly to MagPick, this also relies on relatively predictable signal dynamics. There is much
room for work to explore how Bela can harness less-traditional time series modelling tech-
niques being introduced in fields such as machine learning.

2.2 Music Information Retrieval
Before looking at probabilistic and neural approaches to time series modelling, its worth in-
troducing a typical approach taken: techniques under the umbrella of Music Information
Retrieval (MIR). MIR has developed a vast range of features reflecting various properties of
1Bela: beautifully interactive sensors and sound. http://bela.io

3
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Chapter 2. Background 4

sound, which can be used as building blocks for sound processing algorithms such as mod-
elling. The typical MIR toolset will be illustrated via a relevant example for brevity - a state-
of-the-art product in electronic percussion, ‘Sensory Percussion’ by Sunhouse [3].

Sensory Percussion is an electronic music suite that combines proprietary high-bandwidth
sensors that measure drumhead vibrations, and an impressive software pipeline using ma-
chine learning and MIR techniques. We can speculate on the implementation through the
patent [4]. Most notably, although continuous drumhead vibrations are recorded, they may
not be directly used in synthesis. Instead, the user configures a range of sound samples that
are played back with varied timbre based on discrete strikes of the drumhead (‘onsets’). This
commonly requires buffering samples from the sensors, and performing frequency-domain
transformations such as the Fast Fourier Transform (FFT) and Constant-Q frequency trans-
form. Although useful in reducing data dimensionality, these frequency-domain transforma-
tions are not always robust over short time frames, harming resolution [14]. Despite this, in
Sensory percussion, spectral analysis of the buffered frames allows (1) a pooled representa-
tion of sensory activity/energy to be created, that might reflect an onset (2) timbral properties
of the sensor signals to be inferred, which can modulate a sample’s playback (3) inference of
spatial properties, namely discrete onset locations on the drumhead, such as ‘centre’ or ‘edge’.

Figure 2.1: Sensory Percussion GUI and sensor hardware, DJ TechTools, 12/10/17.

It is common in the world of MIR to focus on ‘onsets’ (individual strike actions on the
drumhead) as these events typically correlate with the start of sounds. However, a drumhead
is a continuously oscillating surface where nuanced details of gesture subtly influence timbre.
Certain techniques such as using brushes, or high-speed stick control involving flams and
(buzz-)rolls might fail to get captured by an algorithm chasing onsets; as they happen rapidly
and get absorbed into the nuances of drumhead oscillation. If frequency-domain transforma-
tions fail to surface detail in these gestures, a drummer may rapidly develop bad technique
that translates poorly to acoustic drumkits - such as poor volume control, timing or stick po-
sitioning. Fundamentally, the MIR approach can enforce a constraint on the possible feature
space that can be used to construct meaningful representations of musical performance. This
might be a limiting factor in the expressive capabilities of DMIs.

http://djtechtools.com/2017/10/12/sensory-percussion-turning-drums-expressive-instruments/
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2.3 Physical Models
One alternative to relying on generic frequency domain transformations for sound modelling
is the construction of physics-based models of musical instruments (an overview was pre-
sented by Välimäki et al. [15]). These models are realistic simulations of instruments, de-
manding rigorous technical implementations informed by significant knowledge of physical
dynamics. Models of bowed strings and percussion instruments are briefly introduced, as a
reference point for the contrasting techniques investigated in this report.

2.3.1 Bowed Strings

Helmholtz motion is a well understood phenomena in bowed strings where the string vibrates
in a V-shape [16], discovered in the nineteenth century and later developed. Theoretically this
could be likened to a time-domain triangular signal, but practically there are deviations intro-
duced by complex interaction between the bow and string, string stiffness etc (see Figure 2.2
for an example). Despite this, Buys et al. [1] harnessed the simplicity in modelling basic string
motion to develop of a real-time regression technique allowing detailed analysis of a string
velocity signal. This has been used by Pardue et al. [2] as a reference signal in a tone regulating
violin, however it was noted that harsh tones cause chaotic model behaviour that demand ei-
ther extending the model or filtering high variance during sustained oscillation regimes. This
illustrates the inherent challenge in developing specialised physical models - even for better
understood phenomena, rare nuances or non-linearities challenge the fundamental assump-
tions that ensure general purpose efficacy of the model.

Figure 2.2: Example string velocity cycle measured in [1].

2.3.2 Percussion

Percussion instruments pose significant challenges for physical simulations, for several rea-
sons: (1) the drumhead membranes must be modelled as 3D objects which interact with air
in the shell’s cavity (2) drums often have two coupled membranes on the top and bottom, and
snare drums additionally have wires under tension on the lower membrane (3) when struck,
or vibrating under certain conditions, complex non-linearities are observed. Examples of
these non-linearities include pitch glides, where perceived pitch varies under large strike am-
plitudes. Torin [17, 18] rigorously simulated these dynamics using finite difference methods.
Despite this, separate work has pursued simpler means of mimicking non-linearities of per-
cussion instruments. Hus et al. [19] notably introduced a ‘loop back’ in frequency modulation
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(FM) synthesis, where the carrier modulates its frequency. In any case, these models lack the
full complexity of an acoustic drum, and there are still questions around how these may be
used in a meaningful way as part of a digital instrument. For example, how sensors might
activate certain aspects of a percussion model; in light of the fact that non-acoustic drumheads
might exhibit different physical behaviour.

2.4 Probabilistic Models
In contexts not limited to music, significant work in human activity and gesture recogni-
tion has harnessed probabilistic models of time series. This has prompted valuable work in
motion-sound mapping, where physical gestures are used to manipulate meaningful synthesis
schemes. Compared to developing physical models or MIR feature-engineering, this process
importantly begins with data reflecting the activity in question. Unsurprisingly there are also
numerous efforts applying deep learning, as surveyed by Nweke et al. [20].

2.4.1 Hierarchical Hidden Markov Models

There have beenmany interactivemusic systems developed involving gesture, but Françoise [21,
22] notably developed and applied probabilistic models of sequences for continuous-time
mapping between gesture and sound parameters. It is data driven, introducing an approach
called ‘mapping by demonstration’, where the user builds a one-shot multimodal model that
can be harnessed in real-time for new gestures.

One of themodels used is aMultimodal Hierarchical HiddenMarkovModel (MHHMM) [23].
The Hidden Markov Model (HMM) is a probabilistic time series model that treats a sequence
as a noisy Markov process, with discrete states over discrete time steps - further information
can be found in a popular tutorial by Rabiner [24]. The Hierarchical HMM (HHMM) [25] cre-
ates a multi-level structure where transitions take place between HMM structures. In other
words, HMM structures form segments (gestural phrases), and the HHMM models higher or-
der sequences in terms of these lower level segments. An example is shown in Figure 2.3. The
MHHMM assumes a gesture and sound sequence share an underlying Markov process, such
that the respective feature vectors can be concatenated (as a multimodal sequence) during
training and modelled as a joint Gaussian Distribution. Therefore, a single training example
consisting of parallel gestural and synthesis features (i.e. some sound sample) is required for
‘mapping by demonstration’.
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Figure 2.3: An example of a HHMM with two levels from [22].

These probabilistic techniques allow control over the temporal dimension of gestures,
however variations in gesture might not follow the training interpretation. Model generalisa-
tion can be controlled using a static ‘variance offset’ parameter, which trades off robustness
(phrase recognition accuracy) and lower reliability (inconsistent phrase detection). Unlike
this static parameter, dynamic variance/confidence bounds have been introduced through
dynamic simulation - Manitsaris et al. [26] used it in modelling of pottery and Volioti et al. [27]
in musical gestures. However, in any case, these gestural tracking solutions pose problems
in how they learn by example. We experimented with HHMM tracking for high-bandwidth
sensor data using a custom drumhead which measures surface oscillations (detailed in Ap-
pendix A), and the XMM library [28]. Interestingly it was possible to use a single gesture (see
Figure 2.4), to track various low level signal phrases for other examples (e.g. Figure 2.5), but it
generalised to other gestures poorly. It should be evident that this not only requires a crude
classification of sensor phrases, but clearly cannot scale to the realm of all gestural variations
that may occur in performance. This is particularly problematic for complex time series.

(a) (b)

Figure 2.4: Example flam used in HHMM training, coloured by phrase. The two lines
reflect different sensors as detailed in Appendix A.
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Figure 2.5: HHMM tracking performance for an unseen example flam (top subplot). The
phrase templates are defined in Figure 2.4.

2.5 Neural Models
Developing a data-driven approach even further, deep learning is a popular option for learning
high-complexity features from time series with minimal hand-holding (e.g. discrete labelling
of training data). This is made possible through technical developments in deep learning,
and readily available compute capacity. New neural network units such as Long Short-Term
Memory units (LSTMs) and Gated Recurrent units (GRUs) have enabled new approaches to
many sequence to sequence learning tasks [29], where a network learns to encode, transform
and decode sequences according to input and target output. This can be a symbolic sequence
(e.g. text sentences or MIDI music), but equally a raw time series. In this section we first
detail relevant neural network architecture, before exploring how they can be harnessed for
anomaly detection and representation learning of sequences.

2.5.1 RNNs, LSTMs and GRUs

Recurrent Neural Networks (RNNs) [30] are a class of deep neural network used in tasks
involving sequences, that learn ‘hidden’ representations of some data for each step in time.
Basic RNNs consist of a 2D grid of ‘hidden state’ vectors, h1..l1..t, with t corresponding to a time
step and l the layers (depth). The first hidden layer h1 consumes input vectors and the final
hl is used as an output; where hij is recurrently updated by hi−1j−1, according to weights wij that
are optimised in training. The hidden state of RNNs is able to model highly complex and non-
linear features of time series, and can easily scale to handle multivariate data. Additionally,
RNNs can be configured to take variable length input sequences. This is useful in cases
where input signals may have different sampling frequencies (such as in a DMI). Following
challenges in training RNNs for learning long-term dynamics in data (e.g. the ‘vanishing
gradient problem’ [31]), variants were introduced - most notably, Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU) cells.

LSTMs [32] were designed to mitigate the issue of vanishing gradients. In addition to a
hidden vector, each cell contains a memory vector clt, which via gating structure can be read,
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written or reset on a given time step. Unless cell state interacts with a forget gate, it can
be propagated through time for a long period of time. GRUs [33] have more recently been
introduced as simplified memory cells. They propagate state through the hidden vector via
smooth interpolation, where some amount of information is forgotten via a reset gate on each
time step. LSTM and GRU gating is demonstrated in Figure 2.6. Both LSTMs and GRUs can
prove effective for sequence modelling, and should often both be evaluated.

Figure 2.6: LSTM and GRU unit illustrations [34] - the red and blue gates are sigmoid and
tanh functions respectively, arrows are vector concatenation and the operators
are pointwise.

LSTMs have been used widely in sequence modelling tasks involving symbolic musical
data such as MIDI (e.g. by Eck et al. [35]). Low-level sensor data in digital instruments
is continuous and high-bandwidth, posing a much greater challenge. Hantrakul et al. [36]
demonstrated real-time use of LSTMs to generate X-Y gestural sequences based on a 2D
musical surface2. Notably this was trained on a small data-set of merely 3000 time steps,
sampled at only 33Hz. Martin et al. [37] suggested LSTMs were insufficient for complex
performance data, not supporting stochastic sampling. They instead introduced a mixture
density networks (MDN) layer after LSTMs to build a multi-modal distribution. Separately,
large networks of dilated convolution layers (CNNs) were used to create ‘WaveNet’ [38], a
model allowing synthesis of high-resolution raw audio (e.g. generative piano synthesis [39])
without RNNs.

Unfortunately RNNs are generally challenging to interpret, and their performance is poorly
understood. Several studies have attempted to understand how these models actually repre-
sent long-term sequence characteristics, but largely offer graphical techniques for analysing
symbolic sequences of text [40, 41]

2.5.2 Anomaly Detection

RNNs are appealing candidates for anomaly detection, given the ability to perform complex
time series modelling. They can be trained to model some historic nominal data; and then
the optimised forecasting capabilities can be used to infer time steps where large errors might
correspond to anomalous data, in some (real time) data stream. This is interesting in the case
of DMIs, as reconstruction error might not simply correspond to sensor errors, but to nuances
reflecting original performance.
2The Roli Lightpad Block: https://roli.com/products/blocks/lightpad-block

https://roli.com/products/blocks/lightpad-block
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Alternative anomaly detection techniques include construction of a Matrix Profile [42],
where crude Euclidean distance-measures construct a similarity profile of windows across a
time series. This distance analysis can be very computationally demanding for high-resolution
sensor data, and insufficient for high complexity data.

Developing an anomaly detection strategy with RNNs requires an approach to handling
reconstruction error. Malhotra et al. [43, 44] demonstrated that anomaly likelihood estimation
can be performed using LSTMs, when modelling predictions errors at a given time step us-
ing some probability distribution. This technique can incorporate overlapping residuals from
sequential time steps, prior to the future observation time. They applied techniques to numer-
ous data sets, including electrocardiogram (ECG) signals. Hundman et al. [45] used LSTMs
to detect anomalies in sensor data from Curiosity, the Mars Science Laboratory (MSL) rover,
trained using expert-labelled anomalous data. Instead of assuming some Gaussian distribu-
tion of past anomalies, they developed a dynamic and non-parametric thresholding approach
that is sensitive to non-stationarity and noise. Cowton et al. [46] also avoided hand-crafted er-
ror features, using expert-labels and particle swarm optimisation (PSO) for a threshold-based
detector; applied to analysing environmental sensor data that had been linked to respiratory
disease in pigs.

2.5.3 Latent Representations

In light of the opaqueness of LSTM hidden state (refer back to 2.5.1), it is often useful to create
an explicit Latent Variable Model (LVM). An LVM specifies a compressed (i.e. basic) distribu-
tion of a higher dimension distribution, allowing complicated variables to be represented in
low-dimensional ‘latent’ variables. These latent variables z ∈ Z represent an efficient and use-
ful distribution of the underlying data manifold (x ∈ X ) as a generative model with function
f : Z → X . Unlike previously discussed techniques, these models can theoretically develop
representations of data in a continuous space without significant assumptions. For example,
a bundle of MIR features reflecting sound properties in a time series are not required, and the
model doesn’t heavily rely on a few template samples like HMMs.

Note however that this latent mapping isn’t trivially interpreted, as it can be highly non-
linear, i.e. it may provide a distorted perspective of the input space X (discussed in detail
by Arvanitidis et al. [47]). This means that the Euclidean distance between two latent points
zi and zj may not reflect some meaningfully equivalent distance in the input space between
corresponding points f(zi) and f(zj).

Taking a probabilistic modelling approach, an LVM is constructed by maximising the
probability of drawing existing/observed data points, given a model with parameters θ. This
is the product of pθ(xi), equivalent to the sum of log pθ(xi). The two components of the
objective are therefore (1) a fixed prior, a simple latent distribution p(z) and (2) a decoder, a
parameterised family of conditional distributions pθ(x|z). For a single data point xi, this can
be written as:

log pθ(xi) = log(

∫
pθ(xi|zi) · p(zi) dz) (2.1)

2.5.4 Variational (Recurrent) Autoencoders

Variational Autoencoders (VAEs) [48] are deep generative models that learn a LVM. They are
composed of an ‘encoder’ and ‘decoder’. The encoder learns the LVM, representing the D-
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dimension input space (X = RD) in d-dimension latent encodings (Z = Rd). The decoder
learns to reconstructD-dimension data from the d-dimension encodings. The latent space, as
a compressed representation of the input space, requires a bottleneck in the network where
smaller sub-networks absorb salient information from the input space. Relevant applications
of VAEs will largely be introduced in the following section - for now we further detail VAEs.

The encoder and decoder networks wrapping the latent sub-network can be constructed
in numerous ways, most simply as linear mapping (fully-connected, FC) layers with nonlinear
activation functions. An appealing variant for time series modelling is the Variational Recur-
rent Autoencoder (VRAE) [6], which uses RNNs (equally LSTMs and GRUs) for the encoder
and decoder. The encoder is initialised with a zero-vector as hidden state, h0, and at later
time steps ht will reflect previous state h(t−1) and data on step xt. The final hidden state
for a sequence hend is used for the latent distribution Z . The decoder’s hidden state is then
initialised with weights sampled from a given latent encoding z, before use as a regular RNN.
By harnessing memory in the network, as introduced in 2.5.1, the issue of scale faced by a
network composed of linear layers may not be faced with larger time series sequences. The
VRAE when introduced by Fabius et al. [6] was interestingly evaluated against a musical cor-
pus - 8 MIDI files (with one dimension per pitch) of 80s-90s video game music. Although
symbolic in nature, whereas we are concerned continuous time series, this demonstrated an
ability to meaningfully model similarity among segments of these files; whilst also providing
a somewhat-stable generative model.

Doersch [49] provided a thorough tutorial on VAEs, which explains the underlying math-
ematics. For a brief gist, the bottleneck consists of two functions (1) µφ : X → Z generates
a surface in Z and (2) σφ : X → Rd records uncertainty in reconstruction. These approxi-
mate the unknown posterior distribution pθ(z|x), via a variational distribution qθ(z|x). The
parameters φ and σ are optimised by maximising the variational lower bound (or ‘evidence
lower bound’, ELBO) of p(x) as per Equation 2.2.

{θ∗, φ∗} = argmax
θ,φ

Eqφ(z|x)[log pσ(x|z)]−KL(qφ(z|x) || p(z)) (2.2)

This directly informs a training loss function L(x; θ, φ), where the first term in Equa-
tion 2.2 refers to a ‘reconstruction’ loss and the second term a ‘KL regularizer’. The former
encourages latent variables to support reconstruction, and the latter encourages qθ(z|x) to-
wards the prior distribution p(z) (it measures the quality of approximation).

2.5.5 Latent Regularisation and Traversal

Variational LVMs aren’t commonly used in problems involving musical audio modelling and
synthesis, and haven’t been used in the development of digital musical instruments. As sug-
gested in 2.5.3, VAEs can suffer to oddity in their highly non-linear latent variables 3. Har-
nessing a VAE for generative purposes or as a feature model therefore can therefore be chal-
lenging, as continuous attributes (e.g. amplitude) of interest in the input space might not be
interpretable in the latent space. When applying VAEs in musical problems, strategies are
commonly pursued to improve the malleability of the latent space.

One commonly trodden approach to encouraging meaningful latent structure is through
regularisation. Hadjeres et al. [7] devised ‘Geodesic Latent Space Regularisation’ (GLSR-VAE),
3This is well illustrated by an interactive demo on [50].
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where an additional regularisation term in the loss function links changes in attribute func-
tions to changes in latent space. This was explored for chorale melodies stylised after J.S.
Bach, regularising by the number of notes played in a given sub-sequence of the training set.
Despite allowing more meaningful interpolation in the latent space, for generative ends, this
work was fortunate to operate on a symbolic input space which facilitated a simple regulari-
sation scheme.

Similarly Esling et al. [5] developed a regularisation scheme, but instead it is perceptually
motivated. Previous studies have used Multi-Dimensional Scaling (MDS) to create ‘timbre
spaces’, based on (perceptual) dissimilarity matrices between instruments. The topology of
these timbre spaces is used to shape the latent space of a VAE built on spectral samples from
the respective instruments, using an ‘additive penalty’ regularisation term in the loss function.
The resulting VAEs develop a highly convincing and smooth evolution in timbre when used
generatively. Unfortunately it is challenging to generalise this approach in the case of DMI
design, as the input space might not be easily regularised according to existing perceptual
studies. Engel et al. [51] notably introduced a similar network for synthesising sounds that
morphed between instruments, using a different architecture - a WaveNet Autoencoder.

Outside of music, in order to improve explanatory power of the latent space for capturing
Brownian dynamics, Hernandez et al. [52] introduced a ‘Variational Dynamics Encoder’ (VDE).
They introduced an autocorrelation loss term, successfully demonstrating that the network
better represents the long-term kinetics of a time series. This might be valuable for time-
domain based feature representations in the musical domain, as there may not be intuitive
continuous attribute vectors, but expected correlation in latent representations over time.

A different approach is adopted by Fortuin et al. [53], where a Self-Organising Map (SOM)
is used to discretise the VAE latent space; as latent encodings are mapped to nodes with mean-
ingful neighbours. This is conceptually similar to approaches that use vector quantisation of
the latent space [54]. These techniques would be interesting to explore in musical problems,
as they allow a somewhat-unsupervised approach to latent regularisation. Fasciani [55] also
used SOMs to create mappings between synthesis and control spaces, informed in training
by a notion of vocal gestures and postures. This is also a meaningful distinction for digital in-
strument design - postures define steady acoustic characteristics, and gestures define sounds
with dynamic acoustic characteristics that might transition between postures.

Instead of encouraging the latent space to be organised in some meaningful way, it is
possible to train separate networks to harness the latent space. For sequential data tasks,
this can involve training an RNN to traverse the complex non-linear manifold Z . One notable
example of this is for ‘World Models’ by Ha et al. [56], an unsupervised reinforcement learning
model (e.g. for video game playing). In this a VAE is used as a ‘vision’ model to encode input
observations from the environment, and an RNN acts as a ‘memory’ model, learning the
pattern of latent encodings such that it can predict future states. This technique was similarly
applied to musical score inpainting by Pati et al. [57], where a ‘LatentRNN’ was trained to fill
the gap between latent encodings of past and future states, such that the missing segment of
score could be decoded. This is an appealing strategy for cases where little is known about
meaningful attributes in the input space, such that regularisation schemes may be challenging.
Additionally, it provides a further auto-regressive model that can be used generatively.
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2.6 Trade-offs in Model Complexity for Digital Musical Instruments
In light of 2.5.5, why might someone prefer to leverage unsupervised learning techniques in
DMIs? There is clearly a significant challenge in ensuring a learned feature space is spa-
tially useful, and instruments inherently demand intuitive mappings from performer actions
to audible output.

As an alternative, consider the segmented linear regression developed by Buys et al. [1]
( described in 2.3.1) for bowed strings, which produces explicit features that reflect known
characteristics: fundamental frequency, amplitude, relative corner position, RMSE. Immedi-
ately, frequency and amplitude are available for use by some synthesis engine. Additionally
the model provides a consistently low latency, which might be compromised slightly based
on precision demands, but should in any case provide a detailed view of the specified fea-
tures. However, this hinges on a crucial assumption - “the bowed string vibration captures
almost all the player’s musical intentions...". It goes without saying that the string forms a large
component of violin sound production, yet it is not apparent that a bundle of (highly detailed)
physical features might be used to model musical expertise in a perceptually meaningful way.

It is not unreasonable to assume that the signals of interest possess unobvious features, be-
yond known physical non-linearities, that are highly salient. These features may be complex,
entangled, inexplicable and highly personal. Unsupervised learning techniques offer an op-
portunity to develop feature spaces of this nature, as introduced in 2.5. For example, VRAEs
with a LVM of N -dimensions expect that there is a complex relationship between N vari-
ables over time for an input signal. Crucially, using a low number of variables to represent
a given signal demands learning the crux of it. Therefore traversing a manifold produced
by a VRAE, and decoding the path of latent vectors, might naturally result in perceptually
salient changes in an audio signal. These changes might be continuous, transitioning through
unimaginable or unachievable dynamics in the signal - yet remaining uniquely nuanced and
recognisable. By virtue, this might encompass a level of achievable performance nuance that
cannot be baked into a model with manually-curated fixed features. In 2.5.5 we highlighted
that this path might be highly complex, posing a technical challenge to harness it - but this
seems reasonable given the challenge of expert musical performance. Unlike a segmented
or windowed approach to signal analysis, a VRAE can consume varying length input signals
over time (this simply updates encoder/decoder hidden state); which is valuable in that an
it doesn’t enforce feature representation at a predetermined time scale. Finally, it is worth
noting the non-trivial latency of interacting with large and complex neural models, including
simple mapping tasks from the input domain through the VRAE. Hardware acceleration (e.g.
GPU or FPGA) may assist in minimising latency if necessary.



Chapter 3

Anomalies in Prediction as Salient
Information
In this chapter we briefly present RNNs that can make forecasts of high-resolution time-
domain sensor data from DMIs. Forecast error can be cast as anomaly, producing a contin-
uous signal of salient information such as rare motifs (nuances) and exogenous events (per-
former interaction such as drum strikes). This is demonstrated as a novel approach to facilitate
onset detection in percussion instruments. More importantly, we establish that RNNs alone
are insufficient as a model for analysing performance, due to complexity of their hidden state.

3.1 Multi-output LSTMs for Anomaly Detection
Several of the anomaly detection methods presented in 2.5.3 forecast at a single time step.
This is not useful for high-resolution sensor data whereby each sample at e.g. 44kHz reflects
only 0.02ms. Further to this, recursively using this initial forecast to construct further forecast
samples would cause accuracy to rapidly deteriorate. This demands multi-output forecasting.
Fox et al. [58] demonstrated a range of networks for multi-output forecasting which improve
on a recursive baseline. These center around an RNN, enhanced with: fully-connected (FC)
output layers per forecast time-step; an additional decoding RNN prior to the FC layers; and
polynomial function learning per forecast time-step.

Fortunately, this design might be simplified for certain digital instruments with harmonic
signals. For example, the continuous oscillation of a drumhead might resemble a sinusoidal
function, where cycles spanning many samples might be forecast at a given sample. It is
feasible that even a basic RNNmight capture such a relationship in a signal. Instead of passing
low-dimension vectors (e.g. 1 dimension per sensor channel) for a time step, high-dimension
vectors may be fed into the RNN (e.g. N dimensions reflecting a window/frame size of the
N previous samples). This latter setup is shown in Figure 3.1. Multiple hiddens cells may
capture the evolving oscillatory dynamics in a signal over multiple cycles, and hidden state
could be mapped to an N-step forecast using a single FC layer. The immediate benefit of
this is a multi-step forecast of size equal to that of the input window, without introducing a
significant number of extra layers for each forecast time-step.

This makes sense for the modelling of a drumhead, as anomalies might only be registered
for complex non-linearities and the most immediate moments of drum strikes. In both of
these cases, typical oscillatory dynamics will break down, affecting forecast performance.
Therefore a continuous anomaly signal reflecting forecast error might be used directly to
infer events of interest, or serve as a malleable signal that could be mixed into a synthesis
engine.

14
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Figure 3.1: RNN with l layers and n-dimensional input and output vectors.

3.1.1 Dataset

In order to harness a lightweight RNN for multi-output forecasting of a drumhead signal,
we suggested the potential importance of harmonic properties in a signal. Most commercially
available electronic drumheads use piezoelectric sensors as onset triggers, as they are sensitive
to spiking input-forces. These are not suitable for this task, so we created a custom electronic
drumhead using electromagnetic induction to record surface oscillations. This is detailed in
Appendix A.

For this modelling task, we recorded 60s of flam-taps1 performed across the drumhead.
These are challenging gestures for typical onset detection algorithms, as strike events occur in
quick succession (almost perceptually indistinguishable) at contrasting amplitudes. Only the
drumhead’s central sensor channel was used, resulting in a 1D time series. To reduce noise
and center the signal around a 0-valued baseline (supporting neural network convergence), the
signal was filtered between 10Hz and 250Hz using 5th order Butterworth filters. The signal
was decimated from 44.1kHz to 11.025kHz for these preliminary assessments, demanding a
smaller network and simplifying initial parameter tuning - it was empirically observed that
this retained reasonable signal quality. We used 80% of the data for training, 20% of the data
for testing, and 20% of the training data as validation (used to assess learning progress). The
data is shown in Figure 3.2.
1Flam-taps are basic drum rudiments combining flams with single taps in double strokes. Flams consist of two

strokes in quick succession, where one is typically a quieter ‘grace’ note.
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Figure 3.2: Training, test and validation splits used to train a multi-output forecasting RNN.
The data corresponds to 60s of flam-tap rudiments on the custom drumhead
presented in Appendix A, from the central pickup.

3.1.2 Implementation and Training

Note that for all neural implementations in this work, including later sections, we used the
PyTorch [59] library. Additionally, we empirically tuned network parameters, and it is worth
noting that a significant amount of future work might explore hyperparameter optimisation
schemes. The final configurations crudely followed from a position where we were able to
discuss some level of success in the modelling task. For example, for this section, this reflected
accurate forecasting. The window size was notably chosen to encompass a number of cycles,
and was equivalent to 18ms of the decimated signal. This could also be adjusted during hyper
parameter optimisation, but will ultimately depend on latency and the model application.

The final configuration is shown in Table 3-A. Training was performed without mini-
batching, and terminated after 324 epochs of 500, due to the early stopping criteria (performed
on validation loss). The server used for training was shared among a number of research staff,
equipped with: 2 × Xeon 5122 CPUs at 3.60GHz, 2 × P100 Tesla GPUs with 16GB RAM and
192GB of host RAM. In total, training took 8.1 hours, notably extended by the shared server
usage.

The loss curve is shown in Figure 3.3. The lack of complete convergence between training
and validation accuracy suggests an un-representative training set, which may be fixed with
a larger sample in future work.
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Hyperparameter Value Note
Hidden Cells 220 -
No. Layers 2 -
In/Out Dims. 200 Window size of 200, steps of 1.
Dropout 0.3 -
Activation ReLU -
Epochs 500 Early stop w. patience 20, min. delta 1e−6.

Learning Rate 1e−3 -
Loss MSELoss -

Optimiser Adam Default parameters.

Table 3-A: Configuration for multi-output LSTM forecaster.

Figure 3.3: Loss curve for multi-output LSTM forecaster, as detailed in Table 3-A.

3.1.3 Evaluation

The proposed model developed the desired tendency to make forecasts with harmonic prop-
erties, whilst remaining sensitive to periods where the drumhead was inactive (not oscillating)
or transitioning betweenmodes (strike events). In Figure 3.4, we demonstrate how the forecast
trajectories evolves at various positions of the rolling window, for a given flam-tap. Forecasts
following the initial strike clearly incorporate harmonic properties closely resembling the am-
plitude and period of the actual drumhead oscillation. Although the forecast window is small
in human terms, at ∼18ms of the decimated signal, it remains accurate over a non-trivial and
promising 200 time steps. For example, applications might leverage the fact this exceeds the
∼10ms latency stability requirement introduced in 2.1. As hypothesised, this might be made
possible due to the harmonic properties of the custom and continuous electromagnetic signal.
It is unclear whether this might work for other instruments with simple functions defining
their low-level dynamics, or even at the original sampling frequency (44.1kHz).
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Figure 3.4: Forecasts made by LSTM for the first strike of a flam-tap event. For a given
forecast, the previous 200 samples were used to project 200 at the given sample.

Figure 3.5: Forecasts made by LSTM for the first strike of a flam-tap event, as a subset of
Figure 3.4.

Figure 3.5 focuses on the beginning the same flam-tap. Between sample 4250 and 4275,
a period equivalent to only ∼2.27ms, the model is able to rapidly adapt the forecast to an
evident strike action. For an observer there is no obvious signal event that might indicate
an incoming strike, suggesting a subtle and complex signal property is detected. Therefore
manually developing a fixed feature reflecting this property would be challenging.

In Figure 3.7, additional curves are introduced for the same strike event to indicate fore-
cast errors. Although cumulative error noticeably rose in forecasts leading up to the flam-tap,
it rose more significantly around sample 4700, prior to the second strike. This might reflect
the complex transition between oscillatory modes as further energy is injected into the sys-
tem - yet unfortunately this error signal offers little explanation. The LSTM’s hidden state
underpinning forecasts is equally impenetrable, illustrated in Figure 3.6. Hidden cell values
certainly resemble plausible aspects of the signal at that point in time, but their combination
for a forecast is unobvious. Further work is needed to consider how analysis of an expanded
dataset might make sense of this state; and whether they even reflect performance nuances
of interest. However, this signal might already be sufficient to develop a highly responsive
onset detector, if anomaly detection techniques such as dynamic-thresholding were leveraged
(refer back to 2.5.2).
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Figure 3.6: Output hidden state vectors of LSTM for a flam-tap, where each line corre-
sponds to a different cell. Note that on a given timestep, these cells are mapped
via a FC layer to form a forecast.

Figure 3.7: Forecast error signals, for a given flam-tap event. Top: the orange curve de-
picts RMS of forecasts made at the given sample. Bottom: the orange curve
represents mean of accumulated RMS forecast errors, for the given sample.

In terms of model compute time, preliminary measures on the aforementioned server are
promising for supporting a real-time system. It took 6.02s to process the test set (single batch)
as a mean of 5 trials, which equates to 0.231ms per window. This involved windowing in
steps of 1 sample (0.09ms), so it is quite possible a real-time system running on basic hardware
(e.g. a laptop) might use steps closer to ∼10 or ∼25 samples. Steps of this size reflected the
duration by which forecasts undergo meaningful changes, according to the examples studied.
Reassuringly, neural models like this have already seen real-time usage - Martin et al. [37]
demonstrated an interactive and generative neural music system using LSTMs for single time-
steps. Notably however, this time-step could represent a value at a greater time delta than 1
sample.
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Finally, as this solution relies on treating segments of a 1-D signal as an N-D feature vector,
it is unclear how this approach might be adapted to N-D signals. This might be problematic
for many instruments. For example, oscillations will vary across locations on a drumhead,
demanding multiple signals. An obvious solution involves using a separate processor per
channel, similar to Pardue et al. [2], but performance nuance might be reflected in the rela-
tionship between these signals. This should be considered in future work.

3.2 Summary
In this chapter basic LSTMS were adapted to make accurate forecasts of drumhead oscilla-
tions, over non-trivial window sizes, likely by virtue of the harmonic properties in the con-
tinuous sensor signal. Rapid adjustments of forecasts following strike actions suggested the
model was already considering more than meets the eye.

The RNN alone seems insufficient in explaining more about the percussion performance
than a simple onset detector. This is not due to lacking complexity in the model, but instead
an ambiguous forecast-error signal and overly complex hidden state. This is a problem for
developing DMIs which want to analyse model features, to harness performance nuance. The
next chapter will explore how RNNs similar to this model might form building blocks of a
larger and more malleable and interpretable model.
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Learning a Latent Space of Salient Features
In this chapter we use RNNs to construct neural networks that perform dimensionality reduc-
tion on time-domain sensor data from DMIs. Instead of compressing sensor data into some
anomaly signal, the model creates a feature space which represents segments of the signal
as smaller vectors. The goal of this is therefore to produce a model that represents features
of performance with lower complexity than RNN hidden-state alone. This is explored for
bowed string signals from an electric violin pickup, and challenges in using this model are
addressed: (re)synthesising signals clearly, and interpreting latent representations.

4.1 Variational Recurrent Autoencoders
Referring back to 2.5.4, RNNs can be used to construct a Variational Recurrent Autoencoder
(VRAE). VRAEs are trained to extract the most salient features of an input signal, such that
they can compress the input signal into a latent feature space, before regenerating the sig-
nal. Similar to the GRU-based Autoencoder developed by Cowton et al. [46], a VRAE can be
constructed using GRUs for encoding and decoding as per Figure 4.1. We focus on GRUs as
opposed to LSTMs in this chapter simply due to their reported faster training, and LSTMs
should be evaluated in future work.

Considering the physics of a bowed string, as introduced in 2.3.1, there are a few basic
dimensions by which the process of Helmholtz motion could be characterised: period (pitch),
amplitude, phase, direction (of bowing) etc. It is feasible that nuances in performance might
involve unusual combinations of these features, or more complex features, over time. It would
be valuable if a VRAE was able map windows from a sensor signal into a feature space re-
flecting some combination of similarly explainable properties, providing a richer means of
analysing performance. This analysis wouldn’t necessarily require fully understanding the
features extracted; as it would still be valuable for synthesis if altering latent vectors in some
dimension(s) resulted in perceptually salient changes to resynthesised signals.

In 2.5.5 we outlined a number of existing V(R)AE applications in modelling audio signals,
which relied on frequency or symbolic representations. This work is concerned with re-
taining detail from the original time-domain signal, posing a greater challenge in input data
dimensionality at the expense of resolution. Engel et al. [51] circumvent this problem in their
large WaveNet Autoencoder by performing large strides of input chunks (32ms) as part of
their CNN-based ‘temporal encoder’, and upsampling latent codes as biases for a powerful
decoder. Their application was quite different, in learning a manifold that allows synthesising
new musical notes by meaningfully interpolating between timbres of real sounds. However
this may not be desired for a DMI; it is possible that the dilation over input samples might
cause a loss of meaningful information for the LVM, that would otherwise be accounted for
by a powerful decoder alone.
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Figure 4.1: Variational Recurrent Autoencoder (VRAE) with GRU encoder and decoder.

4.1.1 Dataset

We used extracts from an existing dataset, where an electrodynamic string pickup was used to
continuously measure string velocity on a violin. This is detailed by Pardue et al. [2] §2.1, and
generally uses similar technology to the custom drumhead sensors detailed in Appendix A.
As a starting point, we used a 150s segment of performance, with open string bowing of
increasing rate on each string, for both regular and a slow bouncing technique. Beyond
capturing a reasonable pitch range1, this sample naturally contained some variation in bow
position and pressure. Figure 4.2 shows samples of this training data.

Similar to the last chapter, the signal was decimated from 44.1kHz to 11.025kHz for these
preliminary assessments, and a 100Hz high pass filter was applied (not masking the lowest
open string frequency). No validation split was used, as it was unclear what smaller sample
would be representative of the broad training set - this would be easily solved in future work
using a custom dataset.

4.1.2 Implementation

The final configuration for the GRU-based VRAE is shown in Table 4-A. As per the last chapter,
note that hyperparameter optimisation wasn’t performed and should be considered for future
work. This would include testing LSTMs instead of GRUs, and alternative loss and activation
functions (e.g. MSELoss and ReLU respectively).

We attempted to maximise re-synthesised signal quality with few latent dimensions, as
the chosen 3D latent space might be more directly interpretable than something with higher
dimensionality. For example, a 4D latent space or above would demand dimensionality reduc-
tion techniques for visualisation, such as t-SNE or PRCA, which would not perfectly preserve
the original latent geometry. We used 100-sample windows at 25% steps, allowing overlap-
add (OLA) reconstruction for synthesis (applying Hann function to decoded segments). This
proved a valuable first step in improving the quality of signals resynthesised by the model.
Notably, we perform compression at ∼33× for 100-sample windows of 11.025kHz audio;
whereas Engel et al. [51] report ∼32× compression of 4s segments of 16kHz audio.
1The frequencies of violin strings are ∼196Hz G3, ∼293Hz D4, ∼440Hz A4 and ∼659Hz E5.
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(a) Regular up bowing. (b) Regular down bowing.

(c) All open bowing, with a gap between regular and slow bouncing.

Figure 4.2: Snippet of training data used for the VRAE - open G string velocity for bowing
with increasing rate.

Hyperparameter Value Note
Enc/Dec Hidden Cells 128 -

Enc/Dec Layers 2 -
In/Out Dims. 1 Window size of 100, steps of 25.
Latent Dims. 3 -
Dropout 0.3 -
Activation Tanh -
Batches 256 Stateful training (no GRU state resets).
Epochs 500 Early stop w. patience 25 after epoch 200, min. delta 1e−6.

Learning Rate 5e−4 -
Loss L1Loss -

Optimiser Adam Default parameters.

Table 4-A: Configuration for GRU-based VRAE.

4.1.3 Training

Training was performed on the same shared server as the last chapter, taking ∼18.8 hours.
Unlike the last chapter, minibatch training was used - the dataset was chunked and gradi-
ents were updated between each chunk. As noted in Table 4-A, stateful training was used,
where GRU (encoder/decoder) hidden state was not reset between consecutive batches. As
the dataset was large, we felt this was important to capture long-term signal state (unlike
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stateless approaches).
Training terminated due to the early stopping criteria after 302 of 500 epochs. The loss

curve is shown in Figure 4.3. The noise can be explained by jumps between local minima
in the learned function, during gradient descent - in moderation this seems expected and
harmless, and any issues would likely fall out during later evaluation.

Figure 4.3: Loss curve for VRAE detailed in Table 4-A.

4.1.4 Evaluation

With expertise transfer in mind, in this section we evaluate whether the VRAE was able to
develop a feature space sensitive to meaningful aspects of the training data. Instead of an
extensive technical benchmark against varied test data, we focus on detailed aspects of the
test set, as there are immediately subtle issues in signal resynthesis demanding attention. The
issue of disentangling the latent space, for intuitive control in some digital instrument, is also
illustrated.

4.1.4.1 Signal Resynthesis

Autoencoders often lose information upon resynthesis (reconstruction of the input signal us-
ing the decoder), as the latent bottleneck forces extreme dimensionality reduction. Despite
this, when using only 3 latent dimensions, Figure 4.4 demonstrates a largely successful recon-
struction at face value. Further to this, resynthesis of a 2-octave G major scale is performed in
Figure 4.5. Although timbre was harsh on some out-of-sample notes, it is possible to identify
all notes, despite training on only open strings.
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(a) Regular

(b) Slow Bouncing

Figure 4.4: Reconstruction (using overlapp-add method) of the data presented in Figure
4.2c, bowing on open G with increasing rate.

Figure 4.5: Example reconstructing a 2-octave G major scale. The in-sample notes (open
strings) are highlighted.

Resynthesis Anomalies: There are two visible discrepencies in Figure 4.4a, shown in
greater detail in Figure 4.6. These were both anomalies, i.e. poorly represented samples in the
input distribution, with limited representation in the latent distribution. The first anomaly,
Figure 4.6a, reflects a stroke in which the bow angle caused a harsh timbre. The reduced
amplitude envelope of the reconstructed signal hints at an inability tomeaningfully re-produce
this, audibly resulting in amuch quieter note. The second anomaly, Figure 4.6b, reflects where
the bow plucked a string on release from the violin. This feature was not audibly present in
the reconstructed signal, and only the decay of the previous bowed stroke is heard.

There is a recurring but less obvious issue in Figure 4.4b, demonstrated in Figure 4.7 (the
6th stroke). By bouncing the bow on the string, each stroke exhibits a unique decay in string
velocitiy that isn’t present in regular bowing. The reproduction suggests the model doesn’t
obviously differentiate this behaviour, appearing to reconstruct some warped version of down
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and up strokes. This might reflect insufficient training, data, or simply a need to be overly
economical with only 3 latent dimensions. It is less audible than the timbral changes resulting
from the aforementioned anomalies. Together with the other anomalies, this suggests the
model might fail to reconstruct more complex (and unusual) phenomena in string vibrations
known in literature. For example, multiple flyback and Schelleng ripples, as detailed by
Woodhouse et al. [60].

Future evaluation should examine whether this reflects the models inability to interpolate
between possible vibrational properties in the signal, as this suggests a failure in expertise
transfer, and a poor generative model. It is possible that the latent representation of these
events is still unique and identifiable. This might also be remedied in future work using a
larger dataset including more varied performance.

(a) Anomalous bow angle on the 10th stroke.

(b) Bow release clipping another string.

Figure 4.6: Examples of poor reconstruction in Figure 4.4a.

Figure 4.7: Example of poor reconstruction in Figure 4.4b.

Amplitude Variance: The most noticeable issue in the resynthesis was something re-
sembling ring modulation. It was harsh for the G-string resynthesis, less noticeable for the D-
string andminor for the other strings. In Figure 4.8 we perform a short-time Fourier transform
on the original and reconstructed signals for regular bowing on the G string, demonstrating
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the noise and subharmonics introduced in reconstruction.
Looking closer at an arbitrary snippet of the reconstructed Helmholtz motion in Figure 4.9,

there is periodically fluctuating peak amplitude over time. Although this is not completely un-
usual on a larger scale, it should not be as noticeable between successive peaks. We demon-
strate this for a handful of consecutive samples on Figure 4.10 - note the varying peak ampli-
tudes in the reconstruction, alongside irregular phase misalignment. The model understand-
ably doesn’t deploy heuristics about the nature of Helmholtz motion, and largely re-produces
the signal; yet the subtle misalignment causes a perceptually significant difference in resyn-
thesis. This is also troubling in that it suggests the model isn’t harnessing certain invariances
over time. We explore a potential solution to this later, in 4.2.

Figure 4.10 also serves to give a view of reconstruction quality at the level of subtle vibra-
tional effects in the string. Even after decimating the original signal by a factor of 4, there is
a level of detail lost between successive peaks.

In the next section we explore the latent representation learned, in order to better under-
stand the kind of features being extracted by the model.

Figure 4.8: STFT of original signal and noisy reconstruction for regular open G bowing.
Only the reconstruction has subharmonics of G-string frequency (∼196Hz).

Figure 4.9: Inconsistent peak amplitudes in reconstructed Helmholtz motion.
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(a) (b)

(c) (d)

Figure 4.10: Consecutive windows (25 sample step) of reconstructed signals - note the sub-
tle variations in peak amplitude and phase across windows.

4.1.4.2 Latent Representation

Manifold Sampling: We can perform pair-wise sampling from the manifold to understand
the relationship between the 3 latent dimensions. Additionally, this can suggest underlying
feature representations. This is shown in Figure 4.11. It involves reconstructing (decoding)
latent vectors where one dimension is held constant, i.e. z = (z1, z2, 0.0), (0.0, z1, z2)
or (z1, 0.0, z2) where z1 and z2 are linearly spaced, and mapped through the inverse CDF
(percent point function, PPF) of the standard normal distribution. For example, looking at the
rightmost plot. As z2 in (0.0, 0.95, z2) is altered linearly, there is an increase in frequency
and then amplitude. In all cases for z2, altering z1 linearly in (0.0, z1, z2) appeared to cause
a change in bowing direction. More granular sampling might elucidate these relationships,
but it is evident already that simple features such as amplitude might be encoded through
non-linear relationships between more than 2 dimensions. This is not surprising, given the
complexity of the signal in question, and limited 3D space.



Chapter 4. Learning a Latent Space of Salient Features 29

Figure 4.11: Sampling from VRAE manifold. Linearly-spaced pairs of dimension values
were used to fill empty 3D latent vectors, before decoding (reconstruction).

Latent Embeddings: In Figure 4.12 we plot all latent embeddings of the dataset (across
all strings) in this 3D space. Note that the colour gradient reflects time (sample) in the original
dataset, which sequentially moved across violin strings. The embedding is composed of four
overlapping pairs of spherical caps, where caps oppose each other in pairs like an hourglass.
The quirky geometries are more obvious in Figure 2.2 where the embeddings are separated by
string. Circles are native figures in polar coordinates, and often characterise a phase portrait,
making it unsurprising that they might emerge in the latent embedding of our windowed
signal. It follows intuitively that the pairs of cup relate to opposing directions of bowing, per
string. Beyond phase and bowing direction, it is less intuitive how other features may be
absorbed into the latent geometry. For example, certain timbres may be achieved by making
unique concentric patterns of the respective string’s hourglass. It is unclear why each string
has formed contrasting shapes of hourglasses in their embeddings.

(a) (b)

Figure 4.12: Latent embedding of full dataset, with colour gradient over sample/time (bow-
ing was sequentially performed on the G, D, A then E strings).

Latent Traversal: In Figure 4.14 we confirm our intuitions about the latent geometry.
We plot the trajectory of latent vectors over a bow direction change, with the colour gradient
reflecting time (sample). Latent embeddings form the vertices of star polygons, as opposed to
circles. This discretisation is unsurprising given that windows encompass at least one cycle
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and we use large windowing steps (25%). As bow direction changes, latent vectors transition
between spherical caps of the hourglass, as shown in Figure 4.14c. It remains unclear how the
geometry of the star polygons incorporate many features of the signal over time. However, the
consistent latent trajectories are promising, and suggest some approach introduced introduced
in 2.5.5 might be used to harness the model in a generative capacity. We explore this later
in 4.3.

(a) G String (b) D String

(c) A String (d) E String

Figure 4.13: Latent embedding from Figure 4.12, with the same colouring, separated ac-
cording to the string of input samples.
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(a) Bow direction change on G string (b) Facing down-bow embeddings

(c) Facing down-up transition (d) Facing up-bow embeddings

Figure 4.14: Trajectory of latent embeddings over a bow reversal - forming separate star
polygons. The colour gradient corresponds to time/sample (later samples are
brighter).

Latent Warping: Despite all suspicions over latent oddity, we performed a crude ex-
periment to confirm whether simple transformations of latent embeddings would disrupt
resynthesis (or maybe produce interesting effects). We found the K-Means centroid2 of all
latent embeddings for bowing on the open E-string, and applied an attractive force from this
position. Force was applied according to Hooke’s law of a spring’s restoring force, Fs = −kx,
with x as the distance between an embedding and the centroid, and k was empirically set to
0.3. The warped latent space is shown in Figure 4.15.

This arbitrary manipulation of latent space largely distorted the resynthesised signal (Fig-
ure 4.16), making it more harsh and unpleasant. Alone, this suggests more thoughtful inter-
pretation and use of the latent space is necessary. However, with this manipulation timbre
was consistently altered. Most regular up strokes had a different and prominent tone, around
∼220Hz (A3), as per the spectra in Figure 4.17. This reflects periodically prominent ampli-
tudes, shown in Figure 4.16b. This pitch is novel - it doesn’t reflect the open A string bowing
in the original dataset (which is A4, ∼440Hz). Where Dimension 1> 0, the notably expanded
spherical cap of the warped E-string (Figure 4.15b) begins to resemble the original A-string
2We performed K-Means clustering using the KMeans class of scikit learn with default parameters: https:

//scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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embeddings (Figure 2.2c). Arguably this might explain how an A-note was produced on a
lower octave, alongside the noticeable change on only one stroke direction. It might simply
be coincidental that using k = 0.3 resulted in a new frequency component which is almost
3× smaller than the original, A3 (220Hz) compared to E5 (659Hz). Although this observation
is not particularly explainable in terms of latent features, it suggests this model might not be
far from use in a generative capacity. Future work might create an interactive latent space,
such that simple mutations can be explored and potentially disambiguated.

(a) Pre-Warp (b) Post-Warp

Figure 4.15: Pre-and-post warping the latent space of open E string embeddings, using a
centroid attractor (red sphere).

(a) Contrasting Up/Down-Bow Warped Rec. (b) Periodic Amplitude in Warped Rec.

Figure 4.16: Resynthesis of regular open E bowing, after latent warping in Figure 4.15.

Figure 4.17: STFT of signal reconstruction after latent warping, for regular open E
(∼659Hz) bowing. Note the prominent ∼220Hz component (A3) introduced.
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4.1.4.3 Phase Invariance & Posterior Collapse

The previous section illustrated that a key obstacle in harnessing latent space might be disen-
tangling phase, or developing a technique to learn meaningful sequences of latent vectors. Key
to this issue is phase-variant input data, which naturally means any representation learned
includes phase. Given the signal in question is periodic, it feels inefficient to have the com-
plication of learning phase from the irregular windows presented. We believe that ultimately
avoiding this overhead might be instrumental in developing more meaningful feature repre-
sentations. The challenge of achieving phase-invariance is similar to harnessing invariances
(e.g. peak amplitude) across consecutive windows, as proposed in 4.1.4.1 and later addressed.

Notably we did attempt a basic solution to this, using a pitch-synchronous overlap-add
methodology (PSOLA). This involved: segmenting the input signal at pitchmarkers (peaks/local
maxima) according to empirically derived thresholds; extracting a window of samples around
each marker that encompasses neighbouring peaks; and applying the Hann function. This is
a common technique used to modify the pitch and duration of signals, which we suspected
might encourage learning local features in a less phase and frequency sensitive manner.

We immediately ran into a well-known issue called posterior collapse (or latent variable
collapse), whereby the model fails to learn meaningful latent representation of data points.
This doesn’t rule out good reconstruction of the input signal, as the decoder might be pow-
erful enough alone. In our case, this manifested itself as the decoder consistently learning to
re-producing the Hann function, shown in Figure 4.18. The result of this is the resynthesis
of pure(-ish) tones. Without applying the Hann function to input windows, the model learn-
ing did not converge with reasonable loss. There are several remedies to posterior collapse
presented in literature (e.g. [61, 62]), such as weakening the decoder, but we have left this for
future work.

Figure 4.18: Example of failed reconstruction due to posterior collapse, during PSOLA-
esque input processing. The reconstructed signal reflects application of a
Hann window to input samples.
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4.2 Sequence Transformer
It became evident in 4.1.4.1 that quality of resynthesis by the VRAE wasn’t satisfactory. It was
hindered by not harnessing invariances between consecutive signal windows. In this section,
we look to tackle that.

4.2.1 Learning Invariance

Generally, in order to improve reconstruction quality of a VAE, the encoder and decoder
hidden state may be increased in size. More obviously, the number of latent dimensions used
to describe the input signal could simply be increased. However, an alternative approach is
to remove invariances from the learning task using a reversible transformation, and then to
re-introduce them later.

This was introduced by Jaderberg et al. [63] to remove spatial invariances in images,
through translation, scaling, rotation and warping. This involved creation of a ‘Spatial Trans-
former’ CNN sub-network, that might learn to ignore spatial invariances as part of a global
learning task. CNNs by design harness phase/spatial invariance, in order to detect underlying
semantic features. This makes CNNs suitable in adjusting away task-irrelevant features from
input samples. Oh et al. [64] adapted this as a ‘Sequence Transformer’ (ST), for transforma-
tions on clinical time series, to improve classification performance. In a similar vein to Bidart
et al. [65] —which introduces a reversible affine transform to a VAE that classifies handwritten
digits— an ST can be added to a VRAE. As per Oh et al. [64], the CNN sub-network explicitly
learns the parameters for a reversible temporal transformation (θ(i) ∈ Rn×2) and magnitude
transformation (φ(i) ∈ Rn×2) of a time series. As part of efficiently constructing the latent
space and improving reconstruction quality (refer back to Equation 2.2), this might naturally
tweak the input signals. For example, amplitude variances might be stretched out or phase
variability might be shifted away, vastly reducing the scale of the VRAE’s learning problem.

There are two forms of VRAE with Sequence Trasnsformer (VRAE-ST) demonstrated in
Figure 4.19. We will test both of these models. In terms of the functional differences:

1. Figure 4.19a is a VRAE-ST which only transforms input sequences prior to encoding.
We will refer to this variant as a VRAE-STe. This model assumes the decoder is already
powerful enough to reasonably reconstruct any input data, but that it might be pro-
vided more meaningful latent encodings if the encoder is able to ignore task-irrelevant
invariances in the input.

2. Figure 4.19b is a VRAE-ST with both input transformation (prior to encoding) and in-
verted output transformation (following decoding). This model also allows the encoder
to ignore task-irrelevant invariances, before eventually reversing input transformations
to simplify the decoder’s learning task.
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(a) Encoder transformer (VRAE-STe). (b) Reversible encoder/decoder transformers (VRAE-ST).

Figure 4.19: VRAE-ST variants - as part of the VRAE, a CNNwhich extracts transformation
parameters θ and φ for static transformation layers.

4.2.2 Implementation

Generally, the network follows the same shape as a typical VRAE. The first addition is a ‘local-
ization’ layer, a small CNN, which extracts the four parameters for transformation. The CNN
implementation is demonstrated in Figure 4.20 - featuring two simple 1D convolution layers
with pooling and output mapped through a FC layer for the four transformation parameters.
The final restricted activation layer follows the implementation of STs by Oh et al. [64]; where
gradient clipping of the transformation parameters prevents the sub-network from getting
stuck in unrecoverable states during training.

The four acquired parameters are directly applied via static transformation functions.
Temporal transformations are implemented as an affine transformation, using the affine_grid
and grid_sample utilities provided in PyTorch. These associate an input signal with a grid
of coordinates, and perform bilinear sampling to apply a given transformation; the same ap-
proach as Bidart et al. [65]. The affine matrices have 2 × 3 dimensions, where θ1,2 populate
the first two parameters of an otherwise restricted matrix: ((θ1, θ2, 0), (0, 1, 0)). This allows
shifts, shear and scaling along the temporal axis. As window sizes are retained after tem-
poral transformation, contiguous value padding is performed where necessary. Magnitude
transformations are much simpler, performing multiplication of (φ1) and addition (φ2) to the
temporally adjusted signal. This allows shifting and scaling along the magnitude axis. For
both sets of parameters (θ1,2 and φ1,2), we introduce an initial network bias of (1, 0) reflecting
identity transformation.
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Figure 4.20: Sequence Transformer (ST) sub-network, a simple 1D CNN.

The final configuration for the VRAE-ST and VRAE-STe can be found in Table 4-B and
Table 4-C respectively. For brevity we have only detailed the ST parameters, as other param-
eters follow the original VRAE detailed in Table 4-A (other than the increased learning rate).
We were surprised to find that the VRAE-STe performed well under a kernel size of 1, such
that the Conv1D layers behave as FC layers.

Hyperparameter Value Note
Conv1D1 KernelSize=7, Channels=8 -
Conv1D2 KernelSize=5, Channels=10 -

MaxPool1D1,2 KernelSize=2, Stride=2 -
FC Dims. 24 -
Dropout 0.3 Applied after Conv1D2

Activation ReLU Applied after MaxPool1D1,2

Clipped Activation ValueRange=±1.75, MaxDelta=±0.01 -
Learning Rate 1e−3 -

Table 4-B: Configuration for ST of the VRAE-ST.

Hyperparameter Value Note
Conv1D1 KernelSize=1, Channels=8 -
Conv1D2 KernelSize=1, Channels=10 -

MaxPool1D1,2 KernelSize=2, Stride=2 -
FC Dims. 24 -
Dropout 0.3 Applied after Conv1D2

Activation ReLU Applied after MaxPool1D1,2

Clipped Activation ValueRange=±1.75, MaxDelta=±0.01 -
Learning Rate 1e−3 -

Table 4-C: Configuration for ST of the VRAE-STe.
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4.2.3 Training

Training the VRAE-STswas no different to a typical VRAE, as the ST is optimised during VRAE
training to minimise the VRAE’s loss. The loss curves are shown in Figure 4.21. VRAE-STe
training terminated after 309 of 500 epochs (∼15.45 hours) due to the early stopping criteria,
and the VRAE-ST terminated after 423 epochs (∼21.15 hours). Given the increased network
size versus the vanilla VRAE (more parameters introduced by the ST), we increased the learn-
ing rate to prevent excessive training times, at the potential sacrifice of model accuracy. Unlike
Oh et al. [64] we introduced dropout within the ST and reduced the FC dimensions in order
to avoid overfitting; which was important in preventing the ST converging to a single set of
transformation parameters across all input samples.

(a) VRAE-STe (b) VRAE-ST

Figure 4.21: Loss curves for VRAE-ST variants detailed in Tables 4-B & 4-C.

4.2.4 Evaluation

Similarly to 4.1.4, in this section we evaluate the resynthesis quality of the VRAE-STs before
examining the corresponding latent representations. Additionally, we compare the transfor-
mations that the models learn to perform.

4.2.4.1 Signal Resynthesis

Both models were able to produce a perceptually clearer but still imperfect signal. In the
original VRAE we noticed periodic changes in peak amplitude over successive cycles of the
resynthesised signal (Figure 4.9), which caused an unpleasant effect resembling ring modu-
lation. In both Figure 4.22b & 4.23b there is visibly less amplitude variation - the peaks are
smoothed out. Examining the spectra in Figure 4.24, the VRAE-STe and VRAE-ST seem to blur
any spurious frequencies below G3 (196Hz). Despite the visible noise, the VRAE-ST produces
a much clearer signal than the other models, with greater depth in timbres produced. The
original VRAE, in comparison, sounds dull and incomplete. The VRAE-STe sits somewhere
in the middle.
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(a) (b)

Figure 4.22: VRAE-STe reconstruction for a segment of regular bowing on open G.

(a) (b)

Figure 4.23: VRAE-ST reconstruction for a segment of regular bowing on open G.

(a) VRAE (b) VRAE-STe (c) VRAE-ST

Figure 4.24: Comparing STFT of regular open G (196Hz) bowing for all VRAE(-ST) models.

4.2.4.2 Sequence Transformations

Unsurprisingly, the VRAE-ST variants developed contrasting tendencies in transforming input
samples. We will detail these in turn.

VRAE-STe Transformations: Figure 4.26 shows that there was highly consistent trans-
formation across the entire dataset, especially temporally. Every sample was compressed
temporally, with minor shifts; and every sample was stretched in magnitude, with some de-
gree of shift downwards. It is unclear exactly why this was advantageous in feature learning,
but one explanation is that this resembles downsampling, where there is less complex infor-
mation processed by the encoder/decoder. Examples are shown in Figure 4.26. Given that
samples were only transformed on input (prior to encoding), the decoder may have relied on
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certain variances to be represented in latent space. This might have handicapped the range
of transformations performed.

Figure 4.25: Transformations performed by the VRAE-STe across full dataset.

(a) (b)

Figure 4.26: Example transformations performed by the VRAE-STe.

VRAE-ST Transformations: Figure 4.28 demonstrates a more varied range of transfor-
mations in this model. There was a highly uniform relationship inmagnitude transformations,
where samples were scaled and shifted proportionally - a simple linear scheme that could be
harnessed by the reversible transformation. Bigger stretches required shifting the sample
more, seemingly corresponding to the desired amplitude normalisation. Examples are shown
in Figure 4.28. Similarly to the VRAE-STe, the model compressed all samples temporally
(resembling downsampling), but also introduced varying shifts in time.

Figure 4.27: Transformations performed by the VRAE-ST across full dataset.
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(a) (b)

Figure 4.28: Example transformations performed by the VRAE-ST.

4.2.4.3 Latent Representation

In Figure 4.29 we observe the latent embeddings of the VRAE-ST variants from the same
angle as the original VRAE embeddings in Figure 4.12. Both are notably different, reflecting
the alternate manifolds developed. Both variants continue to take the shape of spherical caps
(seperated plots can be found in Appendix B). Unlike before, embeddings for each string don’t
always resemble an hourglass .

Spherical embeddings suggests that introducing an ST did not avoid the complication of
phase variance across windows. There was clearly no drastic change in the latent geometry
such that it becomes more explainable and malleable, suggesting further methods are needed
to harness the latent space. It is also possible that this improved quality of resynthesis might
hinder generative applications, if it is achieved by normalising latent samples according to
important perceptual features (such as amplitude). This trade-off will ultimately depend on
the target application of the model.

(a) VRAE-STe (b) VRAE-ST

Figure 4.29: Latent embedding of full dataset by the VRAE-ST variants, with colour gradi-
ent over sample/time.
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4.3 LatentRNN
We observed that the VRAEs embedded the dataset in hourglass shapes, where latent vectors
formed trajectories resembling star polygons. Despite being unintuitive in terms of feature
representation, in this section we briefly propose a method of harnessing these latent se-
quences, which might be a key focus of future work.

4.3.1 Learning Latent Sequences

In order to disentangle representations learned by a VAE, various rigorous approaches to
regularisation have been deployed in existing work (refer back to 2.5.5). Unfortunately reg-
ularisation can be challenging where the input space is poorly defined. As an alternative
approach, Ha et al. [56] and Pati et al. [57] both demonstrated that an additional RNN within
a VAE could learn how to traverse latent space (‘LatentRNN’). Given the latent space may
be highly nonlinear and complex, RNNs seem well suited to learn patterns of latent vectors.
We propose that a LatentRNN could be introduced to a VRAE, learning meaningful latent
sequences for a given task. This is demonstrated in Figure 4.30. At any point, the LatentRNN
can use the history of latent vectors to forecast the next. This can then be used recursively to
forecast a sequence (multi-output forecast), for generative uses.

One performance application of a LatentRNN might be to hold a given note (with respec-
tive timbre), freeing up the performer to do something else. For example, a violinist may
trigger the LatentRNN via some pedal before releasing the bow, causing the LatentRNN to
continue the stroke generatively. After learning to better harness the latent space, the per-
former may additionally be able to interact with the LatentRNN in order to introduce effects
(subtely altering the sequence of latent variables generated).

Figure 4.30: LatentRNN layer of a VRAE, demonstrating recursive forecasting of latent vari-
ables at future time steps.
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4.3.2 Implementation

Unlike the previous models we explored, the LatentRNN combines multiple models in a single
architecture. We leverage a regular VRAE (i.e. not an ST variant) similar to that implemented
in 4.1.2 (but instead with 5 latent dimensions), using it as a pre-trained submodel of the La-
tentRNN. This technique is often referred to as ‘transfer learning’. The RNN component of
the LatentRNN is a basic GRU, and does not harness the multi-output forecasting approach
developed in Chapter 3. The final configuration for the LatentRNN is shown in Table 4-D.

Hyperparameter Value Note
Hidden Cells 512 -
No. Layers 2 -
In/Out Dims. 5 Window size of 25, steps of 1.
Dropout 0.1 -
Activation Tanh -
Batches 25 Stateless training (GRU state resets).
Epochs 500 Early stop w. patience 15, min. delta 1e−6.

Learning Rate 5e−4 -
Loss MSELoss -

Optimiser Adam Default parameters.

Table 4-D: Configuration for LatentRNN.

4.3.3 Training

During training, mini-batches of the windowed input signal were first passed through the
VRAE encoder, and then the respective latent encodings were windowed further. The Laten-
tRNN was trained on these latent windows, learning to forecast the following latent encoding.
Training took ∼6.4 hours, terminating at 195 of 500 epochs due to the early stopping criteria.
The loss curve is shown in Figure 4.31.

The VRAE submodel was ‘frozen’ throughout training, with parameters being explicitly
excluded from gradient computation - i.e. it was not further optimised as part of the Laten-
tRNN training process.

Figure 4.31: Loss curve for LatentRNN detailed in Table 4-D.
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4.3.4 Evaluation

In Figure 4.32 we demonstrate the LatentRNN recursive forecast, where at sample 18775 the
LatentRNN is used generatively instead of input samples being directly reconstructed. Evi-
dently it is unable to accurately forecast a single cycle accurately using the recursive strategy,
however the first ∼50 samples resemble a peak. This behaviour was consistent across trials.
The loss curve (Figure 4.31) might illustrate this inaccuracy, with convergence to a non-trivial
amount of mean-squared error (∼0.2) for a single latent vector forecast.

Although underwhelming, this is promising, as there are two key ways that forecasting
performance may be drastically improved. First, we might harness the multi-output ap-
proaches developed in Chapter 3 or by Fox et al. [58], improving forecast accuracy by avoiding
the recursive approach. Recursive forecasting causes errors in prediction to rapidly com-
pound. Second, we may construct the LatentRNN using a Mixture Density Network (MDN)
which outputs the parameters of a mixture of Gaussian distributions for prediction. This was
used for latent forecasting by Ha et al. [56], and for prediction of continuous signal values by
Martin et al. [37] in interactive music systems. Both authors highlighted the importance of
using MDNs given complex input data demanding some amount of stochasticity.

Dijan [66] found that when implementing the LatentRNN proposed by Ha et al. [56], a large
MDN-LSTM was required with: 8 gaussians, 1024 hidden units, a 1024 unit FC layer, and
sequences of 500 latent vectors. This suggests we might also need to increase the LatentRNN
model size by a reasonable factor.

In addition to developing the model further, the training procedure adopted should be
better informed by the desired performance application. For example, instead of framing
the training task as simple prediction, it might involve decoding latent vectors and evaluating
generated timbres with a perceptual criteria. This amounts to a rich opportunity for future
work.

Figure 4.32: Example of a LatentRNN generative forecast, beginning at the purple line
(sample 18775). Recursive forecasting accuracy rapidly deteriorates.
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4.4 Summary
In this chapter VRAEs were developed to perform dimensionality reduction on bowed string
signals, exposing a latent space that can support analysis and generation of signals. In a 3D
latent space, sequences of input signals were encoded as polygon stars, where the geometry
described properties such as pitch and timbre.

Achieving reasonable (re)synthesis quality was vital in evaluating VRAE suitability for per-
formance applications. Generally, resynthesis was accurate for the dataset, and further for a
largely out-of-sample scale. However, introduction of the VRAE-ST was necessary to remove
an unpleasant effect resembling ring modulation. The ST supported the VRAE by learning a
combination of reversible amplitude normalisation and downsampling, simplifying the learn-
ing task.

We noticed that anomalies (e.g. anomalous bow angle) were perceptuallymasked in resyn-
thesis, with low amplitudes. In terms of expertise transfer, this suggests a potential deficiency
in the feature representation learned - the model cannot interpolate between all plausible
vibrational properties of the signal. This should be closely examined in future work.

Despite a reduced feature representation compared to RNN hidden state, harnessing the
VRAE’s latent space poses a reasonable challenge. In terms of analysis, it is hard to infer prop-
erties of the signal from latent trajectories. Through basic manipulation of the latent space,
we altered the tone of isolated bow strokes, but this was not a clean signal transformation
and is hard to explain. This doesn’t proclude generative use of the latent space. Preliminary
assessment of traversing latent space using RNNs (a LatentRNN) showed promise in learning
to generate meaningful signals.



Chapter 5

Conclusions
This work has explored unsupervised learning techniques that are able tomodel high-resolution
time-domain signals from digital musical instruments. Fixed feature engineering poses chal-
lenges in flexibly extracting salient features, so the modelling problem was re-framed as a
task in expertise transfer. The key achievements of this work were as follows:

1. In Chapter 3 it was shown that RNNs could accurately learn a model an oscillating
drumhead signal. Through a multi-feature representation of time-domain windows,
basic LSTMs were able to harness harmonic properties for long-term multi-output fore-
casts (∼18ms). This amounted to multiple cycles, and far exceeds the single-sample
prediction demonstrated by Martin et al. [37] as part of their interactive music system,
which harnessed MDRNNs. Forecast accuracy was demonstrated to be useful in char-
acterising events such as drum strikes. This provides a more continuous and flexible
signal than typically used by systems which detect discrete onsets, such as Sensory
Percussion by Sunhouse [3, 4]. However, LSTM hidden state alone was shown to be
inaccessible as a tool to explain features observed in the signal.

2. In Chapter 4 it was shown that a VRAE could learn a model of high-resolution time-
domain bowed string velocity signals. Existing work applying VAEs in musical tasks
has focused on lower-resolution frequency [5] or symbolic [6, 7, 8] representations. The
VRAE harnessed RNNs and performed substantial dimensionality reduction on input
samples, constructing a 3D latent space that could be used for analysis and genera-
tion of signals. Properties of the signal (e.g. timbre) were defined by the geometry of
a sequence of latent vectors. We were able to messily manipulate a signal’s pitch for
bowing in one direction through an arbitrary linear manipulation of latent space, but
this was not an intuitive outcome. This characterises the enigmatic and nonlinear fea-
ture representation adopted by the VRAE. Two enhancements were also presented:

(a) In Section 4.2 we introduced a novel model, the Variational Recurrent Autoen-
coder with Sequence-Transformer (VRAE-ST). The reversible ST learned to per-
form amplitude normalisation, audibly improving resynthesis, which originally
had an unpleasant effect resembling ring modulation. Bidart et al. [65] recently
also harnessed a transformer alongside a VAE, but in the domain of image pro-
cessing.

(b) In Section 4.3 we demonstrated that an RNN could be used to traverse the rather
unintuitive VRAE latent space; where timbre was represented in the geometry
of latent vector sequences. The basic LatentRNN developed was almost able to
recursively forecast the next cycle of the vibrating string. The only existingmusical
application of a LatentRNN is by Pati et al. [8], for inpainting of symbolic musical
scores.
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5.1 Future Work
There are several ways in which this work could be developed. Notably the models de-
veloped weren’t deployed in a generative or performance application, suggesting there are
various outstanding challenges.

• Improving latent interpretability: Harnessing the unintuitive and nonlinear latent ge-
ometry seemingly requires some combination of regularisation and latent sequence
learning. We proposed that a LatentRNN might be useful way to circumvent this prob-
lem, as it is unclear how regularisation may be performed. Simple adjustments to the
model might also help disentangle features, as investigated by Dubois [67]; including
scaling KL-loss with a new hyperparameter (e.g. β-VAE variants) or performing an-
nealing. Refer back to 4.3.4 for future work relating to improving the LatentRNN.
• Phase-invariant feature learning: We believe there is more room to develop the VRAE-
ST model introduced in this work, to better account for phase-invariant features in the
input signal. Ultimately we believe this would drastically improve control of the feature
representation. Potentially this requires re-thinking the input data, moving away from
naively processing overlapped segments time-series data. When attempting a simple
PSOLA-esque strategy involving windowing around pitchmarkers, models experienced
posterior collapse, as the decoder learned to simply re-produce the Hann window ap-
plied to each segment. However, this approach might be re-considered.
• Gesture-synthesis mappings: Performance applications of these models will require a
meaningful mapping between gestural control and synthesis. Fasciani et al. [55] made
a valuable distinction between performance postures and gestures, and used this to
develop SOMs linking input (frequency-domain) features to synthesis timbres. This is
an appealing route to follow, given Fortuin et al. [53] proposed a SOM-VAE variant
which also models time-series data.
• Process improvement (incl. hyperparameter optimisation): There is an abundance of
low hanging fruit in terms of improving the models, which might be trivial for some-
one with greater deep learning experience. For example, hyperparameter optimisa-
tion, evaluating different neural networks (LSTMs versus GRUs), improved data pre-
processing and more complex training schemes.
• Larger training & test data sets: It goes without saying that the datasets explored in
this work were minimal, and this poses concerns for the transferability of the models
developed. Future work should begin by carefully constructing a wider andmore varied
dataset, which might be informed by the aforementioned gesture-posture distinction.
• Real-time architecture: Performance applications would demand real-time use of these
models, which they are currently not suited for in both architecture and performance.
There might be several challenges in deploying these deep learning models on an em-
bedded device, including memory requirements, CPU requirements and software com-
patibility. Instead, an approach involving OSC communication between an embedded
device (part of the digital musical instrument) and a remote host might be necessary.
Martin et al. [37] demonstrated this architecture for an interactive musical system using
neural networks. The buffering and time-series windowing (or alternative) schemes
will need careful consideration alongside the input dimensions expected by any model.
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Appendix A

Custom Electronic Drumhead

Typical electronic drum kits have proprietary and inaccessible handling for sensor data, pro-
viding simply a MIDI-based interface for note onsets. In order to model the actual vibrations
of a muted drumhead using continuous sensors, we created a simple test rig using electro-
magnetic induction.

A.1 Design
The rig consisted of a 12 inch basswood snare drum, where the batter head was 3-ply mesh
(typical of electronic/hybrid drumkits), and the resonant head and rim were removed. We
used an existing adjustable crossbar to create a frame across the drum diameter, and mounted
laser-cut platforms at desired sensor locations (see Figure 1.1). For preliminary testing, these
locations were in the centre of the drumhead and also to one side. Thin copper wires were run
along the drumhead surface above these platforms, and 12mm × 2mm (diameter × depth)
N42 Neodymium magnets were sellotaped to the platforms. Only a single loop of copper
wire was used on the drumhead to minimise weight and hence interference with the natural
modes of vibration. Through Faraday’s Law, changes in magnetic flux along the surface wires
(from interaction with the magnets) creates voltage depending on rate of motion. Therefore
when the drumhead vibrates, for example due to a strike, the wires also oscillate relative to
the stationary magnets. This requires the platforms to be raised close to the wires, without
obstructing the drumhead vibrations following forceful drumstick impacts.

Figure 1.1: Drum rig viewed from the base, where the electromagnetic pickups can be
seen along the crossbar.
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A.2 Sensor Technology
The combination of only a single loop of wire and subtle vibrations of the muted drumhead
result in a very small induced signal (on the order of µV ). This requires amplification to ensure
a reasonable signal-to-noise ratio. The pre-amplifier used was custom-built for previous work
involving string pickups on electric violins (see Figure 1.2 for the design). It features OPA1612
op-amps, which have very low voltage noise density - and are described in further detail in
[2]. The amplified signals are then directly connected to analog inputs of the Bela board.

Figure 1.2: Pre-amplifier schematic for each input electrodynamic pickup on the drum-
head (wire along surface), as per [2].

A.3 Example Output
Sensor data was exported over OSC from the Bela board using the tools detailed in Appendix
C (see oscsend.cpp and oscrec.py). Some isolated examples of different drum strokes are
demonstrated in Figure 1.3 - each are distinct with a high level of detail.

(a) (b)

(c) (d)

Figure 1.3: Example gestures recorded from the custom drumhead. Top row: full stroke
at the center (left) and full stroke at the side (right). Bottom row: a flam (left)
and rolls (right).



Appendix B

VRAE-ST Latent Embeddings

(a) G String (b) D String

(c) A String (d) E String

Figure 2.1: VRAE-STe latent embeddings from Figure 4.29a, with the same colouring, sep-
arated according to the string of input samples.
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(a) G String (b) D String

(c) A String (d) E String

Figure 2.2: VRAE-ST latent embeddings from Figure 4.29b, with the same colouring, sep-
arated according to the string of input samples.



Appendix C

Model Training Framework

The software framework produced is an analytics-oriented bundle of tools and code note-
books, supporting the training and evaluation of PyTorch [59] models for time series. The
various components of this are detailed in the following sections: (1) data collection (2) model
definition (3) configuration (4) evaluation. The project used Python v3.6.5, and package ver-
sions can be found in requirements.txt from Listing 1. The full repository is made available
at https://github.com/Kappers/APP.

C.1 Module Organisation
In Listing 1 the various scripts and utilities used throughout this work are described. Note
that torch_rnns/ reflects early investigations of RNNs with PyTorch, for Chapter 3, and
is not discussed here. The top-level training framework was developed for Chapter 4, as a
generalised and flexible environment that can be used in later work - this is detailed in the
following section.

C.2 Data Collection
There are utility scripts for collecting data from sensors on a Bela board, and equally for sim-
ple conversion of existing WAV files - in both cases, a serialised binary format for the NumPy
environment [68] is produced (.npz) which can be loaded via helpers in utils/misc.py.

• WAV conversion: This can be simply performed using the utils/npz_to_wav.py
script with the rev argument.

• Collection from Bela: This requires coordinating oscsend.cpp on a Bela board, and
oscrec.py on a host. Firstly, the OSC endpoints should be defined in global scope for
both files, alongside the number of sensor data channels and packet size. Following
that:

1. Define a data-buffer size (total volume to be collected) in oscrec.py as a multiple
of the OSC packet size. Consider the sampling frequency to inform this.

2. Begin running oscrec.py, it will wait for OSC packets.
3. Begin running oscsend.cpp, and immediately it will start buffering and transmit-

ting OSC packets. This is where you might meaningfully interact with sensors.
4. When oscrec.py is finished, it will terminate. Before termination, a progress bar

will be logged as the buffer is filled. You can use a key-interrupt to finish data
collection early.
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requirements.txt # Python package versions, exported using '> pip freeze'
oscsend.cpp # OSC sender from Bela to a receiver, for use as render.cpp
models.py # PyTorch model classes, inheriting from SequenceModule
train.py # Training tool, requiring model config in appmodels/
appmodels/
- seqvae/ # Example models of SequenceVAE class.

- config_violin.v3_100w_big.yaml # Config for a trained model
- SequenceVAE_20190723103422.pt # PyTorch weights for above model
- train_20190723103422.yaml # Training meta-information for above model.

- latentrnn/
...

- seqtransvae/
...

utils/
- gen_testdata.py # Dumps noisy sin function dummy data
- misc.py # Various helpers, e.g. file management and windowing
- npz_to_wav.py # Converts wav to and from numpy time series files
- oscrec.py # Python-based OSC receiver for data from oscsend.cpp
- plotpickle.py # Plots a pickled matplotlib graph file/object
- scope.py # Oscilloscope for playing back time series
notebooks/
- HHMM_Constructor.ipynb # HHMM experimentation tool
- LSTM_Hidden_Sounds.ipynb # LSTM hidden state exploration and sonification
- VAE_Explorer.ipynb # VAE analysis
- VAE_LatentOdyssey.ipynb # LatentRNN analysis
- VAE_ReconstructionQuality.ipynb # VAE reconstructed audio analysis
torch_rnns/ # DEPRECATED training, for LSTM anomaly detection
- lstm_train.py # Training script, model parameters defined globally
- logs/

- train_20190531093809_lstm_2l128h_100h50p_100ep.log
...

- lstm_2l100h_100h50p_100ep/ # Output training results
- model # PyTorch weights for given model
- test.pdf # Graphing of loss and performance

...

Listing 1: Module structure and overview.

C.3 Model Training

C.3.1 Model Definition

Every model trained is defined in models.py, according to Listing 2. Several example mod-
els are provided in models.py (that are not all evaluated in this thesis), but the official Py-
Torch [59] documentation presents valuable tutorials on how to produce custom neural net-
work modules.

Models are interacted with in a generic way from train.py: they are loaded from config
using the from_conf() factory; the processing of a batch of data is assumed to be imple-
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mented via the PyTorch forward() method; and loss per training epoch is calculated using
compute_loss(). Notably, config files are expected by train.py which specify the model
class, parameters and existing learned weights if they exist. This is detailed in the next section.

1 ...
2 class SequenceModule(nn.Module):
3 ...
4 def init_submodels(self, submodels, submodel_confs):
5 # If the model wraps another model (e.g. LatentRNN and VAE).
6 raise NotImplementedError()
7

8 @classmethod
9 def from_conf(cls, conf):
10 raise NotImplementedError("Implement class factory for init'able from config dict")
11

12 def compute_loss(self, x_batch, y_batch):
13 raise NotImplementedError("Evaluate batch and return loss")
14 ...
15 class SequenceVAE(SequenceModule):
16

17 def __init__(self, ...):
18 super(SequenceVAE, self).__init__()
19 # Model-specific initialisation here.
20 ...
21 ...
22 def forward(self, x):
23 # Typical PyTorch method to map some input data, x.
24 ...
25 return out
26 ...

Listing 2: SequenceModule inheritance example in models.py, for definition of a new model
(e.g. SequenceVAE). The NotImplementedError lines can be interpreted as abstract methods
requiring subclass implementation.

C.3.2 Configuration

Training begins with a config file, that is provided to train.py as an argument. This is
a .yaml file declaring the various models to be built, as a collection of parameters. These
are used by train.py to construct a model instance, prepare training data and limit the
training process. During training, learned network weights and training meta-information
are generated which can be referred to by path in this config file. An example config file is
annotated in Listing 3.

C.3.3 Training and Logging

If training —successive epochs with batch sizing determined by config— is performed without
the stdout command, three files will be updated after each epoch: model weights, training
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1 #
2 # Free-text about this given config file.
3 #
4 name: seqvae # Acronym for the respective network.
5 version: 0.1 # Free-text version label that can be tracked in version control.
6 submodels: # List of models which form the given network.
7 - name: 'SequenceVAE' # The class of a given submodel.
8 order: 1 # Order of the submodel in network pipeline.
9 pretrained: # Weights and metadata, if they exist (submodel trained).
10 model: 'appmodels/seqvae/SequenceVAE_20190723103422.pt'
11 meta: 'appmodels/seqvae/train_20190723103422.yaml'
12 freeze : true # Whether submodel shouldn't undergo any training.
13 params: # Model parameters, used by the respective class from_conf().
14 layers: 2
15 dropout: 0.3
16 hidden: 128
17 latent: 3
18 input: 1
19 stateful: true
20 train:
21 data_path: # List of data files (.npz) to be used in training.
22 - '~/APP/data/sample_allnote_rate_150s.npz'
23 preprocess: # Pre-processing for data
24 fs: 44100.0 # This is static information for data
25 resample_factor: 4 # Decimation
26 highpass: 100.0 # Lowpass is also available
27 scale: true # Transform data to range 0-1
28 # Additional options are available, see train.py
29 ...
30 epochs: 500 # Number of maximum training epochs
31 batch: 256 # Batch size
32 learning_rate: 0.0005
33 window:
34 step: 25 # Sliding window steps
35 x: 100 # Input vector in samples
36 y: 100 # Output vector in samples
37 mirror: true # Forces input vector to equal output vector
38 early_stopping: # Criteria to early-terminate training
39 min_loss: 0.000001
40 patience: 25
41 after_epoch: 200
42 split: # Data split. Anything not in train is used for validation.
43 train: 0.8

Listing 3: Example configuration file for model SequenceVAE. Note that it has been trained,
so existing weights and training metadata are found as paths under the pretrained key.
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metadata and logs. These are shown in Listing 4 & 5. This allows training on remote hosts,
with full visibility of training progress, that can be recorded in version control. Note that the
respective training optimisation procedure is declared within a given model.

appmodels/seqvae » cat train_20190723103422.yaml
conf:
name: SequenceVAE
...
params: {dropout: 0.3, hidden: 128, input: 1, latent: 3, layers: 2, stateful: true}
pretrained: {meta: '', model: ''}
train:
batch: 256
data_path: [/homes/tmk31/app/data/sample_allnote_rate_150s.npz]
early_stopping: {after_epoch: 200, min_loss: 1.0e-06, patience: 25}
...

- batch_size: [256, 100, 1]
epoch: 302
total_loss: 0.009938601404428482
total_time: 224.83093523979187

...

Listing 4: Example trainingmeta-information (.yaml) output from train.py for a given config
file. This details model and training parameters as well as per-batch training information.
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appmodels/seqvae » cat train_20190723103422.log
Loading model config...
> Training SequenceVAE
Loading data...
Preparing model...
Training SequenceVAE submodel...
Path used for weights: appmodels/seqvae/SequenceVAE_20190723103422.pt
Path used for train. meta: appmodels/seqvae/train_20190723103422.yaml
Will early stop with: 25 patience, 1e-06 min loss
Starting epoch 0/500...
...
Starting epoch 302/500...
> 292 batches of [256, 100, 1]
> Total Loss: 0.009938601404428482, Val Loss: nan
> Finished in 224.8309s
> Writing updated weights...
> Writing updated training meta...
Starting epoch 303/500...
Early stop: 26 waited, 0.009368088096380234 best loss (1e-06 min loss)
Add model weights path to config for future use:

appmodels/seqvae/SequenceVAE_20190723103422.pt

Listing 5: Example training logs (.log) output from train.py for a given config file. This
will also aggregate any warnings or errors raised during training.

C.4 Evaluation Tools
After training, or when train.py is provided a config file referencing pre-trainedweights, loss
curves are plotted and the reconstructions of the configured data are displayed. Most of the
visualisations produced in this report have been produced using notebooks (see notebooks/),
where code snippets for loading models can be found. For an example, see Figure 3.1 - this
notebook is equipped with widgets that can be used to selective and load a config file.
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Figure 3.1: Demonstration of the VAE_ReconstructionQuality.ipynb notebook, which
loads a pre-trained model before: (1) plotting reconstructions and (2) creating
an audio widget for evaluation.


	Abstract
	Acknowledgments
	Table of Contents
	Introduction
	Contributions
	Report Structure

	Background
	Time Series Modelling in Digital Instruments
	Music Information Retrieval
	Physical Models
	Bowed Strings
	Percussion

	Probabilistic Models
	Hierarchical Hidden Markov Models

	Neural Models
	RNNs, LSTMs and GRUs
	Anomaly Detection
	Latent Representations
	Variational (Recurrent) Autoencoders
	Latent Regularisation and Traversal

	Trade-offs in Model Complexity for Digital Musical Instruments

	Anomalies in Prediction as Salient Information
	Multi-output LSTMs for Anomaly Detection
	Dataset
	Implementation and Training
	Evaluation

	Summary

	Learning a Latent Space of Salient Features
	Variational Recurrent Autoencoders
	Dataset
	Implementation
	Training
	Evaluation

	Sequence Transformer
	Learning Invariance
	Implementation
	Training
	Evaluation

	LatentRNN
	Learning Latent Sequences
	Implementation
	Training
	Evaluation

	Summary

	Conclusions
	Future Work

	Bibliography
	Appendix Custom Electronic Drumhead
	Design
	Sensor Technology
	Example Output

	Appendix VRAE-ST Latent Embeddings
	Appendix Model Training Framework
	Module Organisation
	Data Collection
	Model Training
	Model Definition
	Configuration
	Training and Logging

	Evaluation Tools


